Power

From NARS2000
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Z←{L} fg R successively applies the function f (or, if there is a Left argument, the function L∘f) to R until the expression Zn g Zn-1 returns a singleton 1. Zn and Zn-1 represent two consecutive applications of f (or L∘f) to R where Z0←R and Znf Zn-1 (or Zn←L∘f Zn-1).
Z←{L} fb R for non-negative integer scalar b, successively applies the function f (or, if there is a Left argument, the function L∘f) to R, b number of times;
for a negative integer scalar b, successively applies the inverse of the function f (or, if there is a Left argument, the inverse to the function L∘f), |b number of times
L and R are arbitrary arrays.
In the first case, Zn g Zn-1 must return a Boolean-valued singleton; otherwise a DOMAIN ERROR is signaled.
In the second case, b must be an integer scalar, otherwise a DOMAIN ERROR is signaled.


For example,

      sqrt←{{0.5×⍵+⍺÷⍵}⍣=⍨⍵} ⍝ Calculate square root using Newton's method
      sqrt 2
1.414213562373095
      sqrt 2x
1.41421356237309504880168872420969807857
      √2x
1.41421356237309504880168872420969807857
      fib←{⍵,+/¯2↑⍵} ⍝ Calculate a Fibonacci sequence
      fib⍣15   1 1
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 
      pow←{⍵=0:,1 ⋄ ⍺+⍡×⍣(⍵-1) ⍺} ⍝ Raise a polynomial to a non-negative integer power
      1 ¯1 pow 5
1 ¯5 10 ¯10 5 ¯1
      phi←1+∘÷⍣=1 ⍝ Calculate the Golden Ratio
      phi
1.618033988749894
      phi=0.5×1+√5
1

Inverses

When the right operand to the Power Operator is a negative integer scalar, the inverse of the function left operand is applied to the right argument. If f f⍣¯1 R ←→ R, then f⍣¯1 is a Right Identity Function, and if f⍣¯1 f R ←→ R, then f⍣¯1 is a Left Identity Function, which all of the examples below satisfy.

At the moment, only a few inverse functions are available as follows:

Function Meaning of Inverse Left/Right
Identity
Function
L⊥⍣¯1 R (N⍴L)⊤R for N sufficiently large to display all digits of R
10⊥⍣¯1 1234567890
1 2 3 4 5 6 7 8 9 0
10⊥10⊥⍣¯1 1234567890
1234567890
10⊥⍣¯1 10⊥1 2 3 4 5 6 7 8 9 0
1 2 3 4 5 6 7 8 9 0
L and R
⊥⍣¯1 R 2⊥⍣¯1 R
⊥⍣¯1 19
1 0 0 1 1
2⊥⊥⍣¯1 19
19
⊥⍣¯1 2⊥1 0 0 1 1
1 0 0 1 1
L and R
L⊤⍣¯1 R L⊥R
10 10 10⊤⍣¯1 2 3 4
234
10 10 10⊤10 10 10⊤⍣¯1 2 3 4
2 3 4
10 10 10⊤⍣¯1 10 10 10⊤234
234
L and R
×/⍣¯1 R πR, that is, factor R into primes
×/⍣¯1 130
2 5 13
×/×/⍣¯1 130
130
×/⍣¯1 ×/2 5 13
2 5 13
L and R
π⍣¯1 R ×/R, that is, multiply together the prime factors in R
π⍣¯1 2 5 13
130
ππ⍣¯1 2 5 13
2 5 13
π⍣¯1 π 130
130
L and R
+\[X]⍣¯1 R ¯2-\[X] R
+\⍣¯1 ⍳4
1 1 1 1
+\+\⍣¯1 ⍳4
1 2 3 4
+\⍣¯1+\ ⍳4
1 2 3 4
L and R
¯2-\[X]⍣¯1 R +\[X] R
¯2-\⍣¯1 4⍴1
1 2 3 4
¯2-\¯2-\⍣¯1 4⍴1
1 1 1 1
¯2-\⍣¯1 ¯2-\4⍴1
1 1 1 1
L and R
-\[X]⍣¯1 R (2-\[X] R)×[X](⍴R)[X]⍴¯1 1
a←?5⍴10
a
10 8 3 2 6
-\⍣¯1 a
10 2 ¯5 1 4
-\-\⍣¯1 a
10 8 3 2 6
-\⍣¯1-\ a
10 8 3 2 6
L and R
÷\[X]⍣¯1 R (2÷\[X] R)*[X](⍴R)[X]⍴¯1 1
a←?5⍴10
a
10 8 3 2 6
÷\⍣¯1 a
10 1.25 0.375 1.5 3
÷\÷\⍣¯1 a
10 8 3 2 6
÷\⍣¯1÷\ a
10 8 3 2 6
L and R
+∘÷/⍣¯1 R Display the Continued Fraction expansion of R to at most ⎕PP terms
This function is best used on Multiple Precision numbers
+∘÷/⍣¯1 449r303
1 2 13 3 1 2
+∘÷/+∘÷/⍣¯1 449r303
449r303
+∘÷/⍣¯1 +∘÷/1 2 13 3 1 2x
1 2 13 3 1 2
L and R
L+∘÷/⍣¯1 R Display the Continued Fraction expansion of R to at most L terms
This function is best used on Multiple Precision numbers
phi←1+∘÷⍣=1 ⍝ Phi -- the Golden Ratio
20 +∘÷/⍣¯1 phi
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 +∘÷/⍣¯1 √2
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20 +∘÷/⍣¯1 *1x
2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1
20 +∘÷/⍣¯1 ○1x
3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2
+∘÷/35 +∘÷/⍣¯1 ○1x
3.141592653589793238462643383279502884197
○1x
3.141592653589793238462643383279502884197
4 +∘÷/⍣¯1 +∘÷/○1x
3 7 15 1
+∘÷\4 +∘÷/⍣¯1 'r' ⎕DC ○1x ⍝ Convergents to Pi
3 22r7 333r106 355r113
L and R